Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acad Radiol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614827

RESUMO

RATIONALE AND OBJECTIVES: Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. MATERIALS AND METHODS: This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor markers and tissue characteristics. RESULTS: Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological variability adds complexity to data interpretation. CONCLUSION: Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed to develop and validate these promising methods for distinguishing TP from PsP in gliomas.

2.
J Orthop Surg Res ; 19(1): 158, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429844

RESUMO

BACKGROUND: Osteoarthritis (OA) is a joint disease characterized by inflammation and progressive cartilage degradation. Chondrocyte apoptosis is the most common pathological feature of OA. Interleukin-1ß (IL-1ß), a major inflammatory cytokine that promotes cartilage degradation in OA, often stimulates primary human chondrocytes in vitro to establish an in vitro OA model. Moreover, IL-1ß is involved in OA pathogenesis by stimulating the phosphoinositide-3-kinase (PI3K)/Akt and mitogen-activated protein kinases pathways. The G-protein-coupled receptor, cc chemokine receptor 10 (CCR10), plays a vital role in the occurrence and development of various malignant tumors. However, the mechanism underlying the role of CCR10 in the pathogenesis of OA remains unclear. We aimed to evaluate the protective effect of CCR10 on IL-1ß-stimulated CHON-001 cells and elucidate the underlying mechanism. METHODS: The CHON-001 cells were transfected with a control small interfering RNA (siRNA) or CCR10-siRNA for 24 h, and stimulated with 10 ng/mL IL-1ß for 12 h to construct an OA model in vitro. The levels of CCR10, cleaved-caspase-3, MMP-3, MMP-13, Collagen II, Aggrecan, p-PI3K, PI3K, p-Akt, Akt, phosphorylated-mammalian target of rapamycin (p-mTOR), and mTOR were detected using quantitative reverse transcription polymerase chain reaction and western blotting. Viability, cytotoxicity, and apoptosis of CHON-001 cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase assay (LDH), and flow cytometry analysis, respectively. Inflammatory cytokines (TNF-α, IL-6, and IL-8) were assessed using enzyme-linked immunosorbent assay. RESULTS: Level of CCR10 was substantially higher in the IL-1ß-stimulated CHON-001 cells than that in the control group, whereas CCR10 was down-regulated in the CCR10-siRNA transfected CHON-001 cells compared to that in the control-siRNA group. Notably, CCR10 inhibition alleviated IL-1ß-induced inflammatory injury in the CHON-001 cells, as verified by enhanced cell viability, inhibited LDH release, reduced apoptotic cells, and cleaved-caspase-3 expression. Meanwhile, IL-1ß induced the release of tumor necrosis factor alpha, IL-6, and IL-8, increase of MMP-3 and MMP-13, and decrease of Collagen II and Aggrecan in the CHON-001 cells, which were reversed by CCR10-siRNA. However, these effects were reversed upon PI3K agonist 740Y-P treatment. Further, IL-1ß-induced PI3K/Akt/mTOR signaling pathway activation was inhibited by CCR10-siRNA, which was increased by 740Y-P treatment. CONCLUSION: Inhibition of CCR10 alleviates IL-1ß-induced chondrocytes injury via PI3K/Akt/mTOR pathway inhibition, suggesting that CCR10 might be a promising target for novel OA therapeutic strategies.


Assuntos
Osteoartrite , Fragmentos de Peptídeos , Fosfatidilinositol 3-Quinase , Receptores do Fator de Crescimento Derivado de Plaquetas , Humanos , Agrecanas , Caspase 3 , Colágeno , Citocinas , Interleucina-6 , Interleucina-8 , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 3 da Matriz , Osteoartrite/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CCR10 , RNA Interferente Pequeno , Serina-Treonina Quinases TOR
3.
Cell Rep ; 42(11): 113335, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37889749

RESUMO

Dysregulation of alternative splicing has been repeatedly associated with neurodevelopmental disorders, but the extent of cell-type-specific splicing in human neural development remains largely uncharted. Here, single-cell long-read sequencing in induced pluripotent stem cell (iPSC)-derived cerebral organoids identifies over 31,000 uncatalogued isoforms and 4,531 cell-type-specific splicing events. Long reads uncover coordinated splicing and cell-type-specific intron retention events, which are challenging to study with short reads. Retained neuronal introns are enriched in RNA splicing regulators, showing shorter lengths, higher GC contents, and weaker 5' splice sites. We use this dataset to explore the biological processes underlying neurological disorders, focusing on autism. In comparison with prior transcriptomic data, we find that the splicing program in autistic brains is closer to the progenitor state than differentiated neurons. Furthermore, cell-type-specific exons harbor significantly more de novo mutations in autism probands than in siblings. Overall, these results highlight the importance of cell-type-specific splicing in autism and neuronal gene regulation.


Assuntos
Transtorno Autístico , Humanos , Transtorno Autístico/genética , Processamento Alternativo/genética , Splicing de RNA/genética , Isoformas de Proteínas/genética , Éxons/genética , Íntrons/genética , Sítios de Splice de RNA
5.
J Neuroinflammation ; 20(1): 80, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944954

RESUMO

BACKGROUND: The unique intracranial tumor microenvironment (TME) contributes to the immunotherapy failure for glioblastoma (GBM), thus new functional protein targets are urgently needed. Alternative splicing is a widespread regulatory mechanism by which individual gene can express variant proteins with distinct functions. Moreover, proteins located in the cell plasma membrane facilitate targeted therapies. This study sought to obtain functional membrane protein isoforms from GBM TME. METHODS: With combined single-cell RNA-seq and bulk RNA-seq analyses, novel candidate membrane proteins generated by prognostic splicing events were screened within GBM TME. The short isoform of MS4A7 (MS4A7-s) was selected for evaluation by RT-PCR and western blotting in clinical specimens. Its clinical relevance was evaluated in a GBM patient cohort. The function of MS4A7-s was identified by in vitro and in vivo experiments. MS4A7-s overexpression introduced transcriptome changes were analyzed to explore the potential molecular mechanism. RESULTS: The main expression product, isoform MS4A7-s, generated by exon skipping, is an M2-specific plasma membrane protein playing a pro-oncogenic role in GBM TME. Higher expression of MS4A7-s correlates with poor prognosis in a GBM cohort. In vitro cell co-culture experiments, intracranial co-injection tumorigenesis assay, and RNA-seq suggest MS4A7-s promotes activation of glioma-associated macrophages' (GAMs) PI3K/AKT/GSK3ß pathway, leading to M2 polarization, and drives malignant progression of GBM. CONCLUSIONS: MS4A7-s, a novel splicing isoform of MS4A7 located on the surface of GAMs in GBM TME, is a predictor of patient outcome, which contributes to M2 polarization and the malignant phenotype of GBM. Targeting MS4A7-s may constitute a promising treatment for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas de Membrana , Humanos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral
6.
Neuron ; 111(10): 1637-1650.e5, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36917980

RESUMO

The Ras GTPase-activating protein SYNGAP1 plays a central role in synaptic plasticity, and de novo SYNGAP1 mutations are among the most frequent causes of autism and intellectual disability. How SYNGAP1 is regulated during development and how to treat SYNGAP1-associated haploinsufficiency remain challenging questions. Here, we characterize an alternative 3' splice site (A3SS) of SYNGAP1 that induces nonsense-mediated mRNA decay (A3SS-NMD) in mouse and human neural development. We demonstrate that PTBP1/2 directly bind to and promote SYNGAP1 A3SS inclusion. Genetic deletion of the Syngap1 A3SS in mice upregulates Syngap1 protein and alleviates the long-term potentiation and membrane excitability deficits caused by a Syngap1 knockout allele. We further report a splice-switching oligonucleotide (SSO) that converts SYNGAP1 unproductive isoform to the functional form in human iPSC-derived neurons. This study describes the regulation and function of SYNGAP1 A3SS-NMD, the genetic rescue of heterozygous Syngap1 knockout mice, and the development of an SSO to potentially alleviate SYNGAP1-associated haploinsufficiency.


Assuntos
Processamento Alternativo , Deficiência Intelectual , Humanos , Camundongos , Animais , Regulação para Cima , Processamento Alternativo/genética , Neurônios/metabolismo , Camundongos Knockout , Deficiência Intelectual/genética , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética
7.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166571, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244542

RESUMO

Sustained proliferative signaling is a crucial hallmark and therapeutic target in glioblastoma (GBM); however, new intrinsic regulators and their underlying mechanisms remain to be elucidated. In this study, I kappa B kinase interacting protein (IKBIP) was identified to be correlated with the progression of GBM by analysis of The Cancer Genome Atlas (TCGA) data. TCGA database analysis indicated that higher IKBIP expression was associated with high tumor grade and poor prognosis in GBM patients, and these correlations were subsequently validated in clinical samples. IKBIP knockdown induced G1/S arrest by blocking the Cyclin D1/CDK4/CDK6/CDK2 pathway. Our results showed that IKBIP may bind directly to CDK4, a key cell cycle checkpoint protein, and prevent its ubiquitination-mediated degradation in GBM cells. An in vivo study confirmed that IKBIP knockdown strongly suppressed cell proliferation and tumor growth and prolonged survival in a mouse xenograft model established with human GBM cells. In conclusion, IKBIP functions as a novel driver of GBM by binding and stabilizing the CDK4 protein. IKBIP could be a potential therapeutic target in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Camundongos , Biomarcadores/metabolismo , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Glioblastoma/metabolismo , Ubiquitinação
8.
Clin Neurol Neurosurg ; 221: 107379, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35932588

RESUMO

BACKGROUND: Pleomorphic xanthoastrocytoma (PXA), anaplastic pleomorphic xanthoastrocytoma (A-PXA), and epithelioid glioblastoma (E-GBM) show overlapping features. However, little is known about their clinical characteristics, molecular features and relationship with progression. METHODS: Fourteen patients diagnosed at Nanfang Hospital from 2016 to 2019 were enroled, including eleven PXA patients, two A-PXA patients, and one E-GBM patient. All tumour tissue samples of the fourteen patients were examined by immunohistochemical staining (MGMT, VEGF, BRAF-V600E, etc.). RESULTS: The mean age of 13 patients with PXA or A-PXA was 25.4 years; twelve of these patients had tumours at supratentorial regions. VEGF positivity was detected in the tumour samples of 13 patients, MGMT positivity in 10 patients, and BRAF-V600E positivity in 7 patients. The recurrent tumour tissue of the patient with E-GBM arising from A-PXA was screened to detect 11 glioma markers (MGMT, BRAF-V600E, etc.) and chromosome 1p/19q by next-generation sequencing (NGS). For the tumour sample of the E-GBM patient who survived for up to 11 years after the fourth resection, BRAF V600E was wild type in the sample obtained from the first surgery, while it was mutant in the second, third, and fourth surgeries. In contrast, the promoter status of MGMT in the four surgeries was unmethylated. The NGS results showed that the mutation frequencies of BRAF V600E in the second, third and fourth surgeries were 14.06%, 9.13% and 48.29%, respectively. CONCLUSIONS: Collectively, the results suggest that patients with A-PXA may relapse multiple times and eventually progress to E-GBM with the BRAF-V600E mutation.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Adolescente , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/cirurgia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/cirurgia , Humanos , Mutação , Recidiva Local de Neoplasia/genética , Proteínas Proto-Oncogênicas B-raf/genética , Fator A de Crescimento do Endotélio Vascular
9.
Cell Mol Life Sci ; 79(8): 458, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907165

RESUMO

Body fluid homeostasis is critical to survival. The integrity of the hypothalamo-neurohypophysial system (HNS) is an important basis of the precise regulation of body fluid metabolism and arginine vasopressin (AVP) hormone release. Clinically, some patients with central diabetes insipidus (CDI) due to HNS lesions can experience recovery compensation of body fluid metabolism. However, whether the hypothalamus has the potential for structural plasticity and self-repair under pathological conditions remains unclear. Here, we report the repair and reconstruction of a new neurohypophysis-like structure in the hypothalamic median eminence (ME) after pituitary stalk electrical lesion (PEL). We show that activated and proliferating adult neural progenitor cells differentiate into new mature neurons, which then integrate with remodeled AVP fibers to reconstruct the local AVP hormone release neural circuit in the ME after PEL. We found that the transcription factor of NK2 homeobox 1 (NKX2.1) and the sonic hedgehog signaling pathway, mediated by NKX2.1, are the key regulators of adult hypothalamic neurogenesis. Taken together, our study provides evidence that adult ME neurogenesis is involved in the structural reconstruction of the AVP release circuit and eventually restores body fluid metabolic homeostasis during hypothalamic self-repair.


Assuntos
Líquidos Corporais , Eminência Mediana , Arginina Vasopressina/metabolismo , Líquidos Corporais/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hipotálamo/metabolismo , Eminência Mediana/metabolismo , Neurogênese , Hipófise/metabolismo
10.
Anticancer Drugs ; 33(1): 100-104, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232949

RESUMO

Epithelioid glioblastoma (E-GBM) is a recently described variant of glioblastoma (GBM) which is associated with short survival and now added as a provisional entity to WHO 2016 classification of central nervous system tumors. About half of these tumors show the BRAF mutant. Therefore, this is a target of special interest for this group of patients. Meanwhile, unlike conventional glioblastoma, E-GBM lacks specific prognostic markers. We described a case of a long-term surviving 37-years-old men patient diagnosed with a BRAF V600E and TERT mutated E-GBM with wild-type in the isocitrate dehydrogenase gene (IDH wild-type). The tumor displayed atypical exophytic growth, an obvious proliferation of vascular endothelial cells, especially tumor tissue can be seen under subarachnoid space. Notably, tumor tissue was found under subarachnoid space. After postoperative conventional treatment options were exhausted, vemurafenib treatment was initiated. The patient remained clinically stable, and follow-up magnetic resonance images were consistent with stable disease for the following fifteen months up to now. Whole-exome sequencing analysis and RNA-seq results of formalin-fixed and paraffin-embedded tissue revealed nine mutant genes (AHNAK2, BFSP1, BRAF, CNTNAP3, DNHD1, MTOR, NFATC3, NOM1). For E-GBM patients, the use of BRAF inhibitors combined with inhibitors of these seven genes may be a useful remedial treatment option.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Vemurafenib/uso terapêutico , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Proteínas Proto-Oncogênicas B-raf/genética , Telomerase/genética , Sequenciamento do Exoma
12.
Front Neuroanat ; 15: 679405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163334

RESUMO

BACKGROUND: Intraventricular penetration is rare in glioblastoma (GBM). Whether the ependymal region including the ependyma and subventricular zone (SVZ) can prevent GBM invasion remains unclear. METHODS: Magnetic resonance imaging (MRI) and haematoxylin-eosin (HE) staining were performed to evaluate the size and anatomical locations of GBM. Binary logistic regression analysis was used to assess the correlation between tumor-ependyma contact, ventricle penetration and clinical characteristics. Cell migration and invasion were assessed via Transwell assays and an orthotopic transplantation model. RESULTS: Among 357 patients with GBM, the majority (66%) showed ependymal region contact, and 34 patients (10%) showed ventricle penetration of GBM. GBM cells were spread along the ependyma in the orthotopic transplantation model. The longest tumor diameter was an independent risk factor for GBM-ependymal region contact, as demonstrated by univariate (OR = 1.706, p < 0.0001) and multivariate logistic regression analyses (OR = 1.767, p < 0.0001), but was not associated with ventricle penetration. Cerebrospinal fluid (CSF) could significantly induce tumor cell migration (p < 0.0001), and GBM could grow in CSF. Compared with those from the cortex, cells from the ependymal region attenuated the invasion of C6 whether cocultured with C6 or mixed with Matrigel (p = 0.0054 and p = 0.0488). Immunofluorescence analysis shows a thin gap with GFAP expression delimiting the tumor and ependymal region. CONCLUSION: The ependymal region might restrict GBM cells from entering the ventricle via a non-mechanical force. Further studies in this area may reveal mechanisms that occur in GBM patients and may enable the design of new therapeutic strategies.

13.
Neuro Oncol ; 23(10): 1693-1708, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34042961

RESUMO

BACKGROUND: The glioblastoma (GBM) mesenchymal (MES) phenotype, induced by NF-κB activation, is characterized by aggressive tumor progression and poor clinical outcomes. Our previous analysis indicated that MES GBM has a unique alternative splicing (AS) pattern; however, the underlying mechanism remains obscure. We aimed to reveal how splicing regulation contributes to MES phenotype promotion in GBM. METHODS: We screened novel candidate splicing factors that participate in NF-κB activation and MES phenotype promotion in GBM. In vitro and in vivo assays were used to explore the function of RSRP1 in MES GBM. RESULTS: Here, we identified that arginine/serine-rich protein 1 (RSRP1) promotes the MES phenotype by facilitating GBM cell invasion and apoptosis resistance. Proteomic, transcriptomic, and functional analyses confirmed that RSRP1 regulates AS in MES GBM through mediating spliceosome assembly. One RSRP1-regulated AS event resulted in skipping PARP6 exon 18 to form truncated, oncogenic PARP6-s. This isoform was unable to effectively suppress NF-κB. Cotreatment of cultured GBM cells and GBM tumor-bearing mice with spliceosome and NF-κB inhibitors exerted a synergistic effect on MES GBM growth. CONCLUSION: We identified a novel mechanism through which RSRP1-dependent splicing promotes the GBM MES phenotype. Targeting AS via RSRP1-related spliceosomal factors might constitute a promising treatment for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas de Neoplasias/genética , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Fenótipo , Proteômica , Spliceossomos/genética , Spliceossomos/metabolismo
14.
BMC Neurol ; 20(1): 310, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819307

RESUMO

BACKGROUND: Age is associated with the prognosis of glioma patients, but there is no uniform standard of age-group classification to evaluate the prognosis of glioma patients. In this study, we aimed to establish an age group classification for risk stratification in glioma patients. METHODS: 1502 patients diagnosed with gliomas at Nanfang Hospital between 2000 and 2018 were enrolled. The WHO grade of glioma was used as a dependent variable to evaluate the effect of age on risk stratification. The evaluation model was established by logistic regression, and the Akaike information criterion (AIC) value of the model was used to determine the optimal cutoff points for age-classification. The differences in gender, WHO grade, pathological subtype, tumor cell differentiation, tumor size, tumor location, and molecular markers between different age groups were analyzed. The molecular markers included GFAP, EMA, MGMT, P53, NeuN, Oligo2, EGFR, VEGF, IDH1, Ki-67, PR, CD3, H3K27M, TS, and 1p/19q status. RESULTS: The proportion of men with glioma was higher than that of women with glioma (58.3% vs 41.7%). Analysis of age showed that appropriate classifications of age group were 0-14 years old (pediatric group), 15-47 years old (youth group), 48-63 years old (middle-aged group), and ≥ 64 years old (elderly group).The proportions of glioblastoma and large tumor size (4-6 cm) increased with age (p = 0.000, p = 0.018, respectively). Analysis of the pathological molecular markers across the four age groups showed that the proportion of patients with larger than 10% area of Ki-67 expression or positive PR expression increased with age (p = 0.000, p = 0.017, respectively). CONCLUSIONS: Appropriate classifications of the age group for risk stratification are 0-14 years old (pediatric group), 15-47 years old (young group), 48-63 years old (middle age group) and ≥ 64 years old (elderly group). This age group classification is effective in evaluating the risk of glioblastoma in glioma patients.


Assuntos
Fatores Etários , Neoplasias Encefálicas/classificação , Glioma/classificação , Medição de Risco , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Feminino , Glioma/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
15.
Cell Biochem Funct ; 38(2): 185-194, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31833081

RESUMO

Glioblastoma (GBM) is the most malignant and aggressive glioma, which has a very poor prognosis. Temozolomide (TMZ) is still a first-line treatment, but resistance is inevitable even in MGMT-deficient glioblastoma cells. The aims of this study were to comprehend the effect of TMZ on nucleus and the underlying mechanism of acquired TMZ resistance in MGMT-deficient GBM. We show the changes of nuclear proteome in the MGMT-deficient GBM U87 cells treated with TMZ for 1 week. Label-free-based quantitative proteomics were used to investigate nuclear protein abundance change. Subsequently, gene ontology function annotation, KEGG pathway analysis, protein-protein interaction (PPI) network construction analysis of DAPs, and immunofluorescence were applied to validate the quality of proteomics. In total, 457 (455 gene products) significant DAPs were identified, of which 327 were up-regulated and 128 were down-regulated. Bioinformatics analysis uncovered RAD50, MRE11, UBR5, MSH2, MSH6, DDB1, DDB2, RPA1, RBX1, CUL4A, and CUL4B mainly enriched in DNA damage repair related pathway and constituted a protein-protein interaction network. Ribosomal proteins were down-regulated. Cells were in a stress-responsive state, while the entire metabolic level was lowered. SIGNIFICANCE OF THE STUDY: In U87 cell treated with TMZ for 1 week, which resulted in DNA damage, we found various proteins dysregulated in the nucleus. Some proteins related to the DNA damage repair pathway were up-regulated, and there was a strong interaction. We believe this is the potential clues of chemotherapy resistance in tumour cells. These proteins can be used as indicators of tumour resistance screening in the future.


Assuntos
Neoplasias Encefálicas/patologia , Núcleo Celular/efeitos dos fármacos , Dano ao DNA , Glioblastoma/patologia , Glioma/patologia , Temozolomida/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/patologia , Biologia Computacional , Reparo do DNA , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteoma , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray
16.
J Biophotonics ; 13(2): e201900196, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743584

RESUMO

Heterogeneity is regarded as the major factor leading to the poor outcomes of glioblastoma (GBM) patients. However, conventional two-dimensional (2D) analysis methods, such as immunohistochemistry and immunofluorescence, have limited capacity to reveal GBM spatial heterogeneity. Thus, we sought to develop an effective analysis strategy to increase the understanding of GBM spatial heterogeneity. Here, 2D and three-dimensional (3D) analysis methods were compared for the examination of cell morphology, cell distribution and large intact structures, and both types of methods were employed to dissect GBM spatial heterogeneity. The results showed that 2D assays showed only cross-sections of specimens but provided a full view. To visualize intact GBM specimens in 3D without sectioning, the optical tissue clearing methods CUBIC and iDISCO+ were used to clear opaque specimens so that they would become more transparent, after which the specimens were imaged with a two-photon microscope. The 3D analysis methods showed specimens at a large spatial scale at cell-level resolution and had overwhelming advantages in comparison to the 2D methods. Furthermore, in 3D, heterogeneity in terms of cell stemness, the microvasculature, and immune cell infiltration within GBM was comprehensively observed and analysed. Overall, we propose that 2D and 3D analysis methods should be combined to provide much greater detail to increase the understanding of GBM spatial heterogeneity.


Assuntos
Glioblastoma , Glioblastoma/diagnóstico por imagem , Humanos , Microscopia , Microvasos , Fótons
17.
Cancer Cell Int ; 17: 91, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118671

RESUMO

BACKGROUND: miRNAs are regarded as molecular biomarkers and therapeutic targets for colorectal cancer (CRC), a series of miRNAs have been proven to involve into CRC carcinogenesis, invasion and metastasis. Aberrant miR-422a expression and its roles have been reported in some cancers. However, the function and underlying mechanism of miR-422a in the progression of CRC remain largely unknown. METHODS: Real-time PCR were used to quantify miR-422a expression in CRC tissues. Both vivo and vitro functional assays showed miR-422a inhibits CRC cell proliferation. Target prediction program (miRBase) and luciferase reporter assays were conducted to confirm the target genes AKT1 and MAPK1 of miR-422a. Specimens from 50 patients with CRC were analyzed for the correlation between the expression of miR-422a and the expression of the target genes AKT1 and MAPK1 by real-time PCR. RESULTS: MiR-422a was down­regulated in CRC tissues and cell lines. Ectopic expression of miR-422a inhibited cell proliferation and tumor growth ability; inhibition of endogenous miR-422a, by contrast, promoted cell proliferation and tumor growth ability of CRC cells. MiR-422a directly targets 3'-UTR of the AKT1 and MAPK1, down-regulation of miR-422a led to the activation of Raf/MEK/ERK and PI3K/AKT signaling pathways to promote cell proliferation in CRC. In addition, miR-422a expression was negatively correlated with the expressions of AKT1 and MAPK1 in CRC tissues. CONCLUSION: miR-422a inhibits cell proliferation in colorectal cancer by targeting AKT1 and MAPK1.

18.
Clin Cancer Res ; 23(22): 7108-7118, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912140

RESUMO

Purpose: To investigate the role and the underlying mechanism of scaffold attachment factor B (SAFB) in the progression of colorectal cancer (CRC).Experimental Design: SAFB expression was analyzed in the Cancer Outlier Profile Analysis of Oncomine and in 175 paraffin-embedded archived CRC tissues. Gene Ontology analyses were performed to explore the mechanism of SAFB in CRC progression. Western blot, RT-PCR, luciferase assay, and chromatin immunoprecipitation (ChIP) were used to detect the regulation of transforming growth factor-ß-activated kinase 1 (TAK1) and NF-κB signaling by SAFB The role of SAFB in invasion, metastasis, and angiogenesis was investigated using in vitro and in vivo assays. The relationship between SAFB and TAK1 was analyzed in CRC tissues.Results: SAFB was downregulated in CRC tissues, and low expression of SAFB was significantly associated with an aggressive phenotype and poorer survival of CRC patients. The downregulation of SAFB activated NF-κB signaling by targeting the TAK1 promoter. Ectopic expression of SAFB inhibited the development of aggressive features and metastasis of CRC cells both in vitro and in vivo The overexpression of TAK1 could rescue the aggressive features in SAFB-overexpressed cells. Furthermore, the expression of SAFB in CRC tissues was negatively correlated with the expression of TAK1- and NF-κB-related genes.Conclusions: Our results show that SAFB regulated the activity of NF-κB signaling in CRC by targeting TAK1 This novel mechanism provides a comprehensive understanding of both SAFB and the NF-κB signaling pathway in the progression of CRC and indicates that the SAFB-TAK1-NF-κB axis is a potential target for early therapeutic intervention in CRC progression. Clin Cancer Res; 23(22); 7108-18. ©2017 AACR.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , NF-kappa B/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Receptores de Estrogênio/genética , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Modelos Biológicos , Metástase Neoplásica , Estadiamento de Neoplasias , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Prognóstico , Ligação Proteica , Receptores de Estrogênio/metabolismo , Transcrição Gênica
19.
J Exp Clin Cancer Res ; 35(1): 152, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27669982

RESUMO

BACKGROUND: Transducin-like enhancer of Split3 (TLE3) serves as a transcriptional corepressor during cell differentiation and shows multiple roles in different kinds of cancers. Recently, TLE3 together with many other genes involved in Wnt/ß-catenin pathway were detected hyper-methylated in colorectal cancer (CRC). However, the potential role and the underlying mechanism of TLE3 in CRC progression remain scarce. METHODS: Gene expression profiles were analyzed in The Cancer Genome Atlas (TCGA) microarray dataset of 41 normal colorectal intestine tissues and 465 CRC tissues. Western blot and Real-time Quantitative PCR (RT-qPCR) were respectively performed to detect protein and mRNA expression in 8 pairs of CRC tissue and matched adjacent normal mucosa. Immunohistochemistry (IHC) was conducted to evaluate TLE3 protein expression in 105 paraffin-embedded, archived human CRC tissues from patients, whose survival data were analyzed with Kaplan-Meier method. In vitro experiments including MTT assay, colony formation assay, and soft agar formation assay were used to investigate the effects of TLE3 on CRC cell growth and proliferation. Additionally, subcutaneous tumorigenesis assay was performed in nude mice to confirm the effects of TLE3 in vivo. Furthermore, gene set enrichment analysis (GSEA) was run to explore potential mechanism of TLE3 in CRC, and then we measured the distribution of CRC cell cycle phases and apoptosis by flow cytometry, as well as the impacts of TLE3 on MAPK and AKT signaling pathways by Western blot and RT-qPCR. RESULTS: TLE3 was significantly down-regulated in 465 CRC tissues compared with 41 normal tissues. Both protein and mRNA expressions of TLE3 were down-regulated in CRC compared with matched adjacent normal mucosa. Lower expression of TLE3 was significantly associated with poorer survival of patients with CRC. Besides, knock down of TLE3 promoted CRC cell growth and proliferation, while overexpression of TLE3 showed suppressive effects. Furthermore, overexpression of TLE3 caused G1-S phase transition arrest, inhibition of MAPK and AKT pathways, and up-regulation of p21Cip1/WAF1 and p27Kip1. CONCLUSION: This study indicated that TLE3 repressed CRC proliferation partly through inhibition of MAPK and AKT signaling pathways, suggesting the possibility of TLE3 as a biomarker for CRC prognosis.

20.
Oncotarget ; 7(38): 61312-61324, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27494869

RESUMO

The development and progression of CRC are regarded as a complicated network and progressive event including genetic and/or epigenetic alterations. Recent researches revealed that MicroRNAs are biomarkers and regulators of CRC progression. Analyses of published microarray datasets revealed that miR-450b-5p was highly up-regulated in CRC tissues. In addition, high expression of miR-450b-5p was significantly associated with KRAS mutation. However, the role of miR-450b-5p in the progression of CRC remains unknown. Here, we sought to validate the expression of miR-450b-5p in CRC tissues and investigate the role and underlying mechanism of miR-450b-5p in the progression of CRC. The results revealed that miR-450b-5p was up-regulated in CRC tissues, high expression level of miR-450b-5p was positively associated with poor differentiation, advanced TNM classification and poor prognosis. Moreover, miR-450b-5p was especially high in KRAS-mutated cell lines and could be up-regulated by KRAS/AP-1 signaling. Functional validation revealed that overexpression of miR-450b-5p promoted cell proliferation and tumor growth while inhibited apoptosis of CRC cells. Furthermore, we demonstrated that miR-450b-5p directly bound the 3'-UTRs of SFRP2 and SIAH1, and activated Wnt/ß-Catenin signaling. In conclusion, miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Collectively, our work helped to understand the precise role of miR-450b-5p in the progression of CRC, and might promote the development of new therapeutic strategies against CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Proteínas ras/genética , Regiões 3' não Traduzidas , Animais , Apoptose , Biomarcadores Tumorais/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes ras , Células HCT116 , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Transdução de Sinais , Resultado do Tratamento , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...